miércoles, 13 de agosto de 2008

historia del atomo

http://es.youtube.com/watch?v=8XaTzA3pRiw

MOLECULA




En química, una molécula es una partícula formada por un conjunto de átomos ligados por enlaces covalentes o metálicos (en el caso del enlace iónico no se consideran moléculas, sino redes cristalinas) , de forma que permanecen unidos el tiempo suficiente como para completar un número considerable de vibraciones moleculares. Constituye la mínima cantidad de una sustancia que mantiene todas sus propiedades químicas. Las moléculas lábiles pueden perder su consistencia en tiempos relativamente cortos, pero si el tiempo de vida medio es del orden de unas pocas vibraciones, estamos ante un estado de transición que no se puede considerar molécula. Hay moléculas de un mismo elemento, como O2, O3, N2, P4..., pero la mayoría de ellas son uniones entre diferentes elementos: la molécula se modifica con el calor.
Se habla de “moléculas monoatómicas”, pese a lo contradictorio de la expresión, al referirse a los gases nobles y a otros elementos en los casos en que se hallan en forma de átomos discretos.
Las moléculas pueden ser neutras o tener carga eléctrica; si la tienen pueden denominarse ion-molécula o ion poliatómico.
Una sustancia química formada por moléculas neutras contendrá un único tipo de tales moléculas, pero si contiene iones-molécula necesariamente ha de contener también iones monoatómicos o poliatómicos de carga contraria.



ESTRUCTURA MOLECULAR

La estructura molecular puede ser descrita de diferentes formas. La fórmula química es útil para moléculas sencillas, como H2O para el agua o NH3 para el amoníaco. Contiene los símbolos de cada elemento que contiene la molécula, así como su proporción por medio de los subíndices.
Para moléculas más complejas, como las que se encuentran comúnmente en química orgánica, la fórmula química no es suficiente, y vale la pena usar una fórmula estructural, que indica gráficamente la disposición espacial de los distintos grupos funcionales.
Cuando se quieren mostrar variadas propiedades moleculares (como el potencial eléctrico en la superficie de la molécula), o se trata de sistemas muy complejos, como proteínas, ADN o polímeros, se utilizan representaciones especiales, como los modelos tridimensionales (físicos o representados por ordenador). En proteínas, por ejemplo, cabe distinguir entre estructura primaria (orden de los aminoácidos), secundaria (primer plegamiento en hélices, hojas, giros...), terciaria (plegamiento de las estructuras tipo hélice/hoja/giro para dar glóbulos) y cuaternaria (organización espacial entre los diferentes glóbulos).

MATERIA

Todos los cuerpos están formados por materia, cualquiera sea su forma, tamaño o estado. Pero no todos ellos están formados por el mismo tipo de materia, sino que están compuesto de sustancias diferentes. Para examinar la sustancia de la que está compuesto un cuerpo cualquiera, éste puede dividirse hasta llegar a las moléculas que lo componen. Estas partículas tan pequeñas son invisibles a nuestros ojos, sin embargo, mantienen todas las propiedades del cuerpo completo. A su vez, las moléculas pueden dividirse en los elementos simples que la forman, llamados átomos.
ATOMO
átomo (del latín atomus, y éste del griego άτομος, indivisible) es la unidad más pequeña de un elemento químico que mantiene su identidad o sus propiedades y que no es posible dividir mediante procesos químicos.

ESTRUCTURA ATOMICA



La teoría aceptada hoy es que el átomo se compone de un núcleo de carga positiva formado por protones y neutrones, en conjunto conocidos como nucleón, alrededor del cual se encuentra una nube de electrones de carga negativa.
El núcleo atómico
El núcleo del átomo se encuentra formado por nucleones, los cuales pueden ser de dos clases:
Protones: Partícula de carga eléctrica positiva igual a una carga elemental, y 1,67262 × 10–27 kg y una masa 1837 veces mayor que la del electrón
Neutrones: Partículas carentes de carga eléctrica y una masa un poco mayor que la del protón (1,67493 × 10–27 kg)
Nube electrónica
Alrededor del núcleo se encuentran los electrones que son partículas elementales de carga negativa igual a una carga elemental y con una masa de 9,10 × 10–31 kg
La cantidad de electrones de un átomo en su estado basal es igual a la cantidad de protones que contiene en el núcleo, es decir, al número atómico, por lo que un átomo en estas condiciones tiene una carga eléctrica neta igual a 0.
A diferencia de los nucleones, un átomo puede perder o adquirir algunos de sus electrones sin modificar su identidad química, transformándose en un ion, una partícula con carga neta diferente de cero.
El concepto de que los electrones se encuentran en órbitas satelitales alrededor del núcleo se ha abandonado en favor de la concepción de una nube de electrones deslocalizados o difusos en el espacio, el cual representa mejor el comportamiento de los electrones descrito por la mecánica cuántica únicamente como funciones de densidad de probabilidad de encontrar un electrón en una región finita de espacio alrededor del núcleo.

PROTONES



protón (en griego protón significa primero) es una partícula subatómica con una carga eléctrica elemental positiva (1,602 × 10–19 culombios) y una masa de 938,3 MeV/c2 (1,6726 × 10–27 kg) o, del mismo modo, unas 1836 veces la masa de un electrón. Experimentalmente, se observa el protón como estable, con un límite inferior en su vida media de unos 1035 años, aunque algunas teorías predicen que el protón puede desintegrarse. El protón y el neutrón, en conjunto, se conocen como nucleones, ya que conforman el núcleo de los átomos.Los protones están clasificados como bariones y se componen de dos quarks arriba y un quark abajo, los cuales también están unidos por la fuerza nuclear fuerte mediada por galeones. El equivalente en antimateria del protón es el antiprotón, el cual tiene la misma magnitud de carga que el protón, pero de signo contrario

ESTRUCTURA DEL NEUTRON

NEUTRON


formado por un quark "up" y dos quarks "down".
El neutrón es una partícula neutra (i.e. sin carga eléctrica, de ahí su nombre) y forma, junto al protón, los núcleos atómicos. Fue descubierto en 1932 por el físico birtánico James Chadwick, lo que le otorgó el premio Nobel de física en 1935. Enrico Fermi, uno de los padres de la energía nuclear, realizó sendos experimentos con neutrones que le llevaron al premio Nobel en 1938 por el descubrimiento de nuevos elementos radioactivos y el estudio de las reacciones con neutrones lentos. También le permitieron conjeturar que el neutrón, a pesar de ser neutro, tiene una distribución de carga en su interior: positiva en el centro y negativa en su exterior. Tal hipótesis, vigente durante décadas incluso tras el desarrollo de la teoría de los quarks, parece haber dejado de ser válida a la luz de nuevos experimentos.

Propiedades físicas de los cuerpos



Según la agrupación de sus moléculas, los cuerpos tienen cuatro estados diferentes: sólido, líquido, gaseoso y plasma.
Estado líquido
Al alcanzar la temperatura de fusión el sólido se va "descomponiendo" hasta desaparecer la estructura cristalina alcanzándose el estado líquido, cuya característica principal es la capacidad de fluir y adaptarse a la forma del recipiente que lo contiene. En este caso, aún existe una cierta ligazón entre los átomos del cuerpo, aunque de mucha menor intensidad que en el caso de los sólidos. El estado líquido presenta las siguientes características:
Fuerza de cohesión menor (regular)
Movimiento-energía cinética.
Toma la forma del envase que lo contiene.
En frío se comprime.
Posee fluidez.
Puede presentar fenómeno de difusión.
Conductividad en medios líquidos
La conductividad en medios líquidos (Disolución) está relacionada con la presencia de sales en solución, cuya disociación genera iones positivos y negativos capaces de transportar la energía eléctrica si se somete el líquido a un campo eléctrico. Estos conductores iónicos se denominan electrolitos o conductores electrolíticos.
Las determinaciones de la conductividad reciben el nombre de determinaciones conductométricas y tienen muchas aplicaciones como, por ejemplo:
En la electrólisis, ya que el consumo de energía eléctrica en este proceso depende en gran medida de ella.
En los estudios de laboratorio para determinar el contenido de sal de varias soluciones durante la evaporación del agua (por ejemplo en el agua de calderas o en la producción de leche condensada.
En el estudio de las basicidades de los ácidos, puesto que pueden ser determinadas por mediciones de la conductividad.
Para determinar las solubilidades de electrólitos escasamente solubles y para hallar concentraciones de electrólitos en soluciones por titulación.
La base de las determinaciones de la solubilidad es que las soluciones saturadas de electrólitos escasamente solubles pueden ser consideradas como infinitamente diluidas. Midiendo la conductividad específica de semejante solución y calculando la conductividad equivalente según ella, se halla la concentración del electrólito, es decir, su solubilidad.
Un método práctico sumamente importante es el de la titulación conductométrica, o sea la determinación de la concentración de un electrólito en solución por la medición de su conductividad durante la titulación. Este método resulta especialmente valioso para las soluciones turbias o fuertemente coloreadas que con frecuencia no pueden ser tituladas con el empleo de indicadores.
La conductividad eléctrica se utiliza para determinar la salinidad (contenido de sales) de suelos y substratos de cultivo, ya que se disuelven éstos en agua y se mide la conductividad del medio líquido resultante. Suele estar referenciada a 25 °C y el valor obtenido debe corregirse en función de la temperatura. Coexisten muchas unidades de expresión de la conductividad para este fin, aunque las más utilizadas son dS/m (deciSiemens por metro), mmhos/cm (milimhos por centímetro) y según los organismos de normalización europeos mS/m (miliSiemens por metro). El contenido de sales de un suelo o substrato también se puede expresar por la resistividad (se solía expresar así en Francia antes de la aplicación de las normas INEN).

Estado gaseoso

Artículo principal: Gas
Por último, incrementando aún más la temperatura se alcanza el estado gaseoso. Los átomos o moléculas del gas se encuentran virtualmente libres de modo que son capaces de ocupar todo el espacio del recipiente que lo contiene, aunque con mayor propiedad debería decirse que se distribuye o reparte por todo el espacio disponible. El estado gaseoso presenta las siguientes características:
Fuerza de cohesión casi nula.
Sin forma definida.
Toma el volumen del envase que lo contiene
Se puede comprimir fácilmente.
Ejerce presión sobre las paredes del recipiente que los contiene.
Los gases se mueven con libertad.

Plasma

Al plasma se le llama a veces "el cuarto estado de la materia", además de los tres "clásicos", sólido, líquido y gas. Es un gas en el que los átomos se han roto, que está formado por electrones negativos y por iones positivos, átomos que han perdido electrones y han quedado con una carga eléctrica positiva y que están moviéndose libremente.
En la baja atmósfera, cualquier átomo que pierde un electrón (p.e., cuando es alcanzado por una partícula cósmica rápida) lo recupera pronto o atrapa otro. Pero la situación a altas temperaturas, como las que existen en el Sol, es muy diferente. Cuanto más caliente está el gas, más rápido se mueven sus moléculas y átomos, y a muy altas temperaturas las colisiones entre estos átomos moviéndose muy rápidamente son lo suficientemente violentas como para liberar los electrones. En la atmósfera solar, una gran parte de los átomos están permanentemente "ionizados" por estas colisiones y el gas se comporta como un plasma.
A diferencia de los gases fríos (p.e. el aire a la temperatura ambiente), los plasmas conducen la electricidad y son fuertemente influidos por los campos magnéticos. La lámpara fluorescente, muy usada en el hogar y en el trabajo, contiene plasma (su componente principal es el vapor de mercurio) que calienta y agita la electricidad, mediante la línea de fuerza a la que está conectada la lámpara. La línea hace positivo eléctricamente a un extremo y el otro negativo causa que los iones (+) se aceleren hacia el extremo (-), y que los electrones (-) vayan hacia el extremo (+). Las partículas aceleradas ganan energía, colisionan con los átomos, expulsan electrones adicionales y así mantienen el plasma, incluso aunque se recombinen partículas. Las colisiones también hacen que los átomos emitan luz y, de hecho, esta forma de luz es más eficiente que las lámparas tradicionales. Los letreros de neón y las luces urbanas funcionan por un principio similar y también se usan (o usaron) en electrónica.
Otro importante plasma en la naturaleza es la ionosfera, que comienza a unos 70-80 km por encima de la superficie terrestre. Aquí los electrones son expulsados de los átomos por la luz solar de corta longitud de onda, desde la ultravioleta a los rayos X: no se recombinan fácilmente debido a que la atmósfera se rarifica más a mayores altitudes y no son frecuentes las colisiones. La parte inferior de la ionosfera, la "capa D", a los 70-90 km, aún tiene suficientes colisiones como para desaparecer después de la puesta del sol. Entonces se combinan los iones y los electrones, mientras que la ausencia de luz solar no los vuelve a producir. No obstante, esta capa se restablece después del amanecer. Por encima de los 200 km, las colisiones son tan infrecuentes que la ionosfera prosigue día y noche.